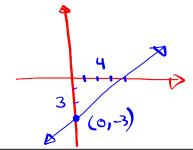
Statistics Summer 2021 **Lecture 2**


1) Simplify:
$$\frac{82-70}{\sqrt{16}} = \frac{12}{4} = \frac{3}{3}$$

2) Solve
$$2.5 \times -12 = 8$$
 $2.5 \times = 20$

$$2.5x = 20$$

$$\chi = \frac{20}{2.5} \left[\chi = 8 \right]$$

3) Geraph
$$y = \frac{3}{4}x - 3$$

Y-Int (0,-3)
 $m = \frac{3}{4}$

Basic Computations in Statistics

n -> Sample Size

x → Data element

ZX -> Summation of data elements

 $\overline{\chi} \rightarrow \chi$ -bar \rightarrow Sample Mean (Average)

$$\overline{\chi} = \frac{\sum x}{n}$$

Consider the Sample below

$$n=5$$
 Range = $8-2=6$ Midrange = $\frac{8+2}{2}=5$

Consider the Sample below 1, 3, 3, 3, 5, 5, 5, 9

1) n =
$$8$$
 2) Range = $9-1=8$ 3) Midrange = $\frac{9+1}{2}=5$

4) Mode =
$$3 £ 5$$
 5) $\sum x = 1 + 3 + 3 + 3 + 5 + 5 + 5 + 9 = 34$
Bimodol

6) $\overline{x} = \frac{\sum x}{n} = \frac{34}{8} = \frac{4.25}{8}$

6)
$$\bar{\chi} = \frac{2\chi}{\eta} = \frac{34}{8} = \frac{4.25}{1}$$

n → Sample Size x → Data element x^2 → Data element²

 $\chi = 2 \times 10^{-1}$ Summation of data elements

 $\Sigma \chi^2$ -> Square data elements, then add them

$$\bar{\chi} = \frac{\sum \chi}{\eta}$$

$$\overline{\chi} \rightarrow Sample Mean$$

$$\overline{\chi} = \frac{\Sigma \chi}{\eta}$$

$$S^2 \rightarrow Sample Variance$$

$$S^2 = \frac{\Sigma (\chi)}{\eta}$$

$$S^{2} = \frac{\sum (\chi - \overline{\chi})^{2}}{m - 1}$$

$$S^{2} = \frac{m \sum \chi^{2} - (\sum \chi)^{2}}{m(m-1)}$$

Consider the Sample below
$$2,3,5,8,12$$
 $1)n=5$ $2)Range=12-2=10$ $3)Midwange=\frac{12+2}{2-1}$ $4)Mode=None $5) \sum x=2+3+5+8+12=\overline{30}$ $6) \overline{x}=\frac{2x}{n}=\frac{30}{5}=\overline{6}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $8) S=\frac{n}{n}=\frac{30}{5}=\overline{6}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $8) S=\frac{n}{n}=\frac{30}{5}=\overline{6}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+5+12=\overline{30}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+12=\overline{30}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+5+8+12=\overline{30}$ $7) \sum x^2=2+3+3+12=\overline{30}$ $7) \sum x^2=2+3+3+12=\overline{30}$ $7) \sum x^2=2+3+3+12=\overline{30}$ $7) \sum x^2=2+3+12=\overline{30}$ $7)$$

Consider the Sample below

1, 2, 2, 3, 3, 4, 4, 11

1)
$$\pi$$
 = 8

2) Range = 11-1 = 10 3) Midrange = $\frac{\|H\|}{2}$ = 6

4) Mode = 2,3, $\frac{2}{8}$ 4 5) $\sum x = 1 + 2 + 2 + 3 + 3 + 4 + 4 + 11 = 30$

Trimodal

6) π = $\frac{2x}{n}$ = $\frac{30}{8}$ = $\frac{3.75}{8}$ 7) $\sum x^2 = 1^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 + 11^2 = 180$

8) $S^2 = \frac{n \sum x^2 - (\sum x)^2}{n(n-1)}$

= $\frac{8 \cdot 180 - 30^2}{8(8-1)} = \frac{540}{56} = \frac{135}{14} = 9.643$ $S \approx 3.105$

How to estimate Sample Standard deviation! $S \approx \frac{\text{Range}}{4}$ The range rule-of-Thumb

Exam 1: Min 50, Max 100

Estimate $S \approx \frac{\text{Range}}{4} = \frac{100-50}{4} = \frac{50}{4}$

what is Standard deviation?

- Non-negative

- It indicates how data elements are spread with respect to \overline{x} .

When S is Small => Data elements are close to \overline{x} .

When S is big => Data elements are more spread out srow \overline{x} .

When S is Zero =>

- No deviation Srom \overline{x} - All data elements are the Same

- Data elements = \overline{x} .

Empirical Rule:

This rule is best when data distribution is symmetric. (Mean = Mode = Median)

1)68/1. Range => \(\overline{\chi} \tau \tau \)

3) 99.7%. Range => \$\overline{\chi} \pm \frac{1}{2} \text{S}\$

Exam 1 Scores have a Symmetric distribution with $\bar{\chi}=82$ and S=6.

use empirical rule to Sind

1) 68% Range => \$\frac{7}{2} \pm \frac{1}{2} \frac{1}{2} = 82 \pm 6 = 82 \frac{1}{2} 6 \frac{1}{2} \fr

2)95/. Range => \$\frac{7}{2} \tag{2} = 82 \frac{1}{2} (6) \frac{1}{70} \tag{6} 94

3) 99.7% Range => \$\frac{1}{x} \pm 3S = 82 \pm 3(6) = \frac{64 to 100}{54 to 100}

```
Salaries of 200 nurses randomly Selected
had a symmetric dist with mean of
$6400 and Stand. Lev. 09 $300.
                             Usual Range
1) 68%. Range
                          2)95%. Range
                          2±28
7 ± S = 6400 ± 300
                         = 6400 ±2(300)
   =0)6100 to 6700
                          =6400 ±600
                           =N 5800 to 7000
3) How many of them
  make more than
    $7000?
          2.5/, 0 200 = .025(200) = 1
```

```
Z-Score

-Round 3-decimals

-Z=\frac{\chi-\chi}{S}

-It is a method to Standardize data element.

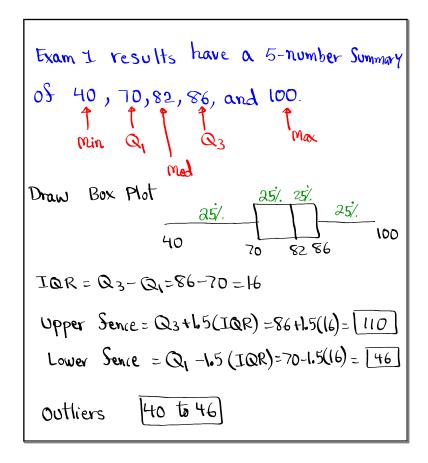
-It allows us to compare data element

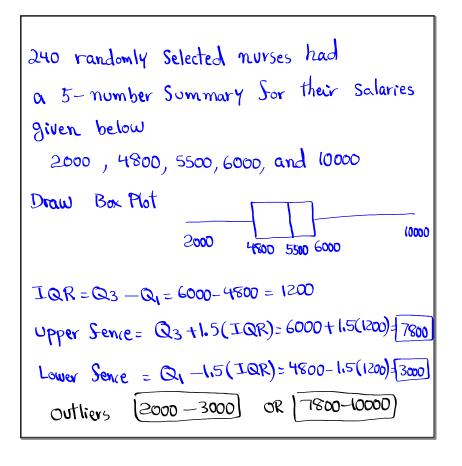
Srom different Samples

When \frac{2}{Z} \leq 2 = Data element is usual when \frac{2}{Z} \leq 2 or \frac{2}{2} = Data element \text{data} element

Z-Score indicates how many Standard deviation is the data element above or below the mean.
```

Exam 1:
$$\bar{x} = 84$$
, $S = 8$


Osvaldo got 90.


 $Z = \frac{x - \bar{x}}{S} = \frac{90 - 84}{8} = \frac{6}{8} = \frac{1.75}{8}$ Usual

Exam 2: $\bar{x} = 74$, $S = 5$

Osvaldo got 85.

 $Z = \frac{x - \bar{x}}{S} = \frac{85 - 74}{5} = \frac{11}{5} = \frac{2.2}{5}$ Unusual Score

Class QZ 2 Complete the chart below, then Iraw			
	class F		Sreg. Polygon.
24	2		clearly label.
30	8		
36	15 5		
42	5	1	